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Spin multiplicity formulae for the correlated Many Body Perturbation Theory (MBPT) and 
Coupled Cluster (CC) methods based upon an unrestricted Hartree Fock (UHF) reference 
function are presented and applied to evaluate the multiplicity in calculations of first row atoms. 
Spin projection in CC theory is discussed. 

The exact eigenfunction of the Schrodinger equation, H'l' = E'l', is also an eigen
function of all operators which commute with the Hamiltonian H. Conventionally, 
approximate calculations of the wavefunction require the approximate wavefunctions 
to be eigenfunctions of these symmetry operators. Obviously, such symmetry adapted 
methods can greatly reduce the computational difficulty in ab initio calculations. 
However, since approximation schemes which eventually lead to the exact wave
function will also eventually produce a wavefunction with the correct symmetry, 
requiring that the approximate eigenfunctions obey the symmetry relations exactly 
is often unnecessary. Instead, it is sometimes convenient to employ trial solutions 
such as unrestricted Hartree-Fock (UHF)1 or other types of broken symmetry 
solutions. When such wavefunctions are used, one should calculate the values of those 
operators from the approximate wavefunction to assess whatever contamination 
from other solutions might be introduced. Such a computation is also the first step 
in defining projection operators that are often used to correct the broken symmetry 
solutions toward the exact resule. 

Since UHF based correlated methods are not spin eigenfunctions, in the following, 
we present a derivation of the average value of the square of the spin, S. S for the 
Hartree-Fock (UHF) wavefunction and a projected matrix element expression for 
correlated wavefunctions. The derivation employs the formalism of second quantiza
tion. The average multiplicity is determined from S2. Expressions for the average 
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multiplicity of (UHF) single determinant wavefunctions have been reported else
where and are in common usage in several molecular structure programs3 . We have 
frequently reported multiplicities for UHF based MBPT (ref. 4 ) and coupled-cluster 
(CC) methods 5 using formulae for the correlated case, but we have not presented the 
explicit expressions. Also, by using spin-projection methods based upon the evalua
tion of 52 for CCjMBPT methods, possibly improved methods could be achieved6 •7 . 

Second Quantized Form of 52 

The total spin operator, 5, of a many-electron system IS a sum of one-electron 
operators, 5(i) 

N 

5(1, ... , N) = L 5(i). (1) 
i= 1 

From which 

(2) 

where the step-up and step-down operators are defined as 

Each spin orbital, xix), is composed of a spatial and spin part, xix) = CfJp(r) Gp, 
where Gp = IX for p = 1, ... , M and (J'p = f3 for p = M + 1, ... , 2M. The step-up 
and -down operators have the property that 

(3a) 

while 

(3b) 

In this paper we choose to use a second-quantized or occupation number representa
tion since this facilitates deriving the relevant expressions. Then, using .Eq. (3) we 
have for 5+, 5_, and 5z , 

5+ =:' L LJpqp!qp 
P •• qp 

(4a) 

5_ = L LJrsr;sa (4b) 
rp,srx 

5z = L <piSziq) ptq = t LP!Pa - -! Lr;rp = t(na - np) . (4c) 
p,q p~ rp 
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The quantity 

(5) 

Llpq = (jpq when p and q have the same spin, is the spatial orbital overlap. The number 
operators nIX and np count the number of orbitals with rx spin (Na) and P spin (Np), 

respectively. For any determinant, <P, nal<p) = Nal<p). 
In the following p, q, r, S signify any spin orbitals and associated operators while 

a, b, c, d indicate orbitals (associated operators) unoccupied in the reference UHF 
determinant, 10) and i, j, k, , orbitals (associated operators) occupied in 10). Wick's 
theorems states that any product of second-quantized operators may be written as 
the normal-ordered product plus all single, double, up to ... fully contracted products. 
Symbolically we have 

,.., rr n ABC ... = (ABC ... l + [ + IABC ... J [ + IABCD ... J • 

Single 
conlrac lions 

double 
conlraclions 

fully conlracted 
terms 

where { } indicates the normal order, which places it and a on the right which ex
ploits the fact that it/O) = alO) = O. Since the only non-vanishing contractions are 
.---. .---. 
itj = fJ'j and abt = (jab' we may construct the normal operator form of {5~} from 
Eq. (2) to be 

"P·POl,Sa.: 

- L: LlirLll/i{qlrp} 
'1X,4p.rp 

+ I LlpqLl,s{p!qprlsa} + {lena - np)}2 , 
4/J,ICIII 
P(Jl,', 

(6a) 

(6b) 

(6c) 

<0/52 /0) is the Fermi vacuum expectation value over the reference UHF wave
function, 10). Terms (6a) and (6b) are derived from contraction of operators for P 
and IX spin orbitals, respectively, and term (6c) comes from no contraction. 

The expectation value has the value 

<015210) = L: ILl ial 2 + t(Na - Np)2 - -leNa - Np) (7a) 
loe,all 

or using the resolution of the identity, L:la) <al = 1 - I/j) <iI, Eq. (7a) may be 
a j 

put into the more conventional form, 9 

<015210) = -leNa + Np) + !(Na - Np)2 - I ILlijl2 . 
i«.J, 

(7b) 
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For a correlated wavefunction c!>, intermediately normalized <O/c!» = 1, we define 

(8) 

in analogy to the energy expression (O/H/c!» = E. Then 

(9) 

where 2Ms + 1 is the spin multiplicity. Such an evaluation of Ms is consistent with 
the energy evaluation from the "transition" or projected matrix element formalism 
employed by CCjMBPT theory. The alternative expectation value formula < c!>/5 2 /c!»j 
< c!>/c!» would suffer from the same non-terminating series that is associated with 
the exponential ansatz, c!> = exp (T) /0). The rigorous development of expectation 
values and properties other than the energy in CCjMBPT theory has been presented 
elsewhere. I 0 

Using Eqs (8) and (6), and the form of the generalized Wick's theorem which only 
permits contractions among different normal products, we obtain 

<0/{5~} e{T)/O) = 

'\' ,1 .. ,1 ·btbJ. - '\' ,1 .. ,1b .tJbp 
~ J" a: ~ 'J ' P (lOa) 

Ip.J •• b. i •• Jp.bp 

I ,1ib,1aj[t~:t~; + t~:J:] • 
ia:.Jp,Ga,hp 

(lOb) 

The terms (lOa) provide the single excitation contribution of IX and P electrons to 
the projected value of 52, respectively, and the last term (lOb) provides the contribu
tion from double and disconnected single excitations of the IX and P spin electrons. 

In the following we examine the multiplicity of correlated wavefunctions such as 
second-order and fourth-order Many Body Perturbation Theory (MBPT) and 
Coupled Cluster wavefunctions together with the reference UHF wavefunction. 

RESULTS AND DISCUSSION 

Table I shows the calculated total energy of the first row atoms at different levels of 
correlation. The calculated spin multiplicity of these atoms by the method described 
in the previous section are summarized in Table II. There is an arbitrariness in the 
choice of wavefunction which represents the corresponding MBPT energies. The 
partial (n - 1)-th order wavefunction which contributes to the n-th order energy is 
a consistent choice in the spirit of the CC method and the present transition matrix 
presentation of the spin multiplicity. We illustrate the wavefunctions of this choice 
diagrammatically for the canonical Hartree-Fock case. I1 Detailed definition of the 
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antisymmetric diagrams used below for the representation of various perturbed 
wavefunctions may be found in refY _ Multiplicity is defined as <OIS2/<p(n»_ 

The first-order wavefunction is 

01 

and once it is closed by a final two-electron interaction, provides the second-order 
energy_ This is also the first approximation to the cluster amplitude in an iterative 
solution of the CC equations_ The second-iteration wavefunction which gives the 
third-order energy is given in Scheme 1_ 

TABLE I 

Total energies of first row atoms at different levels of approximation_ A DZP contracted gaussian 
basis set is used_ The values in the lower row are obtained by calculations with the core electrons 
uncorrelated. All entries are expressed as relative dimensionless quantities E/ Eh, Eh = 2·6255 . 
. 106 J mol- 1 

Method B C N 0 F 

----- --- --------

SCF -24'52997 - 37'68875 - 54'39754 -74'80566 -99'39817 

MBPT 
D(2) -24'58017 -37'75414 - 54·48091 -74'91839 -99-54714 

-24'56715 -37,74061 -54,46710 -74'90438 -99'53296 

MBPT 
D(3) -24·59480 -37'76936 -54,49467 -74,93167 -99'55671 

-24'58071 - 37'75496 -54,48014 -74'91708 -99'54207 

SDQ(4) -24'59998 -37'77337 -54'49674 -74'93345 -99'55823 
-24'58586 - 37'75897 -54,48221 -74'91886 -99'54357 

SDTQ(4) -24'60032 - 37·78386 - 54'49731 -74·93446 -99'55992 
-24'58616 - 37'75942 -54,48275 -74'91983 -99'54523 

CCD -24'60250 -37'77473 -54·49677 -74'93342 -99'55786 
-24'58847 -37'76038 -54'48226 -74'91885 -99'54322 

LCCD -24'60694 - 37'77787 -54,49874 -74'93514 -99'55920 
-24'59283 -37'76346 - 54·48419 -74'92053 -99'54453 

CCSD -24'60315 -37-77529 -54,49709 -74'93390 -99'55840 
-24'58912 -37-76094 - 54-48258 -74'91932 -99'54375 

CCSDT-1 -24'60395 -37'77627 -54·49792 -74'93518 -99·56019 
-24-58982 -37'76186 -54,48338 -74·92056 -99'54551 
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cp(2) • cpO) + cpl21 

cplll + 

02 03 Of, 

SCHEME I 

The diagrams D2, D3, and D4 appear in the linear part of the first CC iteration. 
The wavefunction associated with the fourth order single, double and quadruple 

excitation approximation (SDQ(4» is given in Scheme 2. 
The diagrams SI through S4 and D5 through D16 appear in the second CC linear 
iteration for the first time while Q diagrams appear in the first non-linear iteration. 
The diagrams D5 to D8 arise from the ring interaction in the first iteration followed 
by a second ring interaction in the sec~nd iteration. The diagrams D9 and DIO result 
from hole-hole (h-h) and particle-particle (p-p) interactions followed by a ring 

TABLE II 

Spin multiplicities of first row atoms computed for UHF based correlated wavefunctions. For 
additional details see Table I 

Method B C N 0 F 

SCF 2-(lO689 3·00421 4·00268 3·00383 2·00248 

MBPT 
D(2) 2·00358 3·00222 4·00165 3·00212 2·00114 

2·00359 3·00223 4·00165 3·00212 2·00115 

MBPT 
D(3) 2·00224 3·00140 4·00110 3·00142 2·00073 

2·00223 3·00141 4·00110 3·00142 2·00073 

SDQ(4) 2·00173 3·00108 4·00084 3·00109 2·00056 

SDTQ(4) 2·00171 3·00106 4·00084 3·00107 2·00055 

CCD 2·00157 3·00091 4·00065 3·00071 2·00039 
2·00156 3·00090 4·00064 3·00071 2·00039 

LCCD 2·00126 3·00072 4·00051 3·00051 2·00030 
2·00126 3·00071 4·00049 3·00051 2·00030 

CCSD 2·00003 3·00004 4·00005 3·00010 2·00005 
2·00002 3·00003 4·00005 3·00011 2·00006 

CCSDT-1 2·00001 3·00001 4·00001 3·00003 2·00001 
2·00001 3·00001 4·00001 3·00003 2·00002 
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SCHEME 2 
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interaction. The diagrams Dll to D13 are ring, h-h and p-p interactions followed 
by an h-h interaction. The diagrams D14 to D16 comes from ring, h-h and p-p 

interactions followed by a p-p interaction. The diagram Ql and pairs of diagrams 
Q2-Q3, Q4-Q5 and Q6-Q7, which differ only in the time ordering of the first and 
second interactions, result from coupling of Tz- Tz CC amplitudes. The CC equation 
accounts for all possible time orderings among the interaction lines for the various 
amplitudes. 

4> (3} • cpSOQ 
(3) + 

~._V-D 
+ 

VY·o 
T1 T2 

+ ~OV + VaV · VOV · VaV 
T3 T4 T5 T6 

· VO.V · VOV · VQ'y · ~OV 
T7 TB T9 T10 

T11 T12 T13 T14 

+ VVO' VVD 
T15 (16 

SCHEME 3 

The wavefunction corresponding to the full fourth-order energy, that is single, 
double, triple and quadruple excitation diagrams, i.e. SDTQ(4), is given in Scheme 3. 
Since triple excitation cluster amplitudes appear after the first iteration, the diagrams 
T1 through T16 appear in the second linear iteration which is second-order in the 
interaction. Because the lowest-order single cluster amplitude is already second-order 
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for an SCF reference, there is no disconnected contributions from Tl in the wave
function for the fourth-order energy, but there are from T2 which has a first-order 
part. It should be noted that the multiplicity thus calculated is different from the 
expectation value of 52 evaluated by the second-order MBPT wavefunction, but is 
more consistent with the spirit of the transition matrix formalism and CC wave
functions. 

The calculated values in Tables I and II show that higher-order MBPT wave
functions such as SDTQ-MBPT(4), CCSD and CCSDT-l 5 are improved in terms 
of the spin multiplicity as well as the total energy. The two values correspond to 
results with and without correlating the core ls electrons. Actually the mUltiplicity 
from CCSDT-l indicates that the wavefunction represents almost a pure spin state. 
The linearized CCD fortuitously gives an energy closer to CCSDT-l than more 
sophisticated methods such as CCD and CCSD, but the spin multiplicities calibrated 
are worse than those of the CCSD model. Thus we would expect the CCSD wave
function to be much better than the LCCD wavefunction. We also remark that the 
valence only correlated wavefunctions are quite accurate in terms of the spin multi
plicity, although the core electron correlation contributions to the total energy are 
of course important to the absolute energy value. 

The contributions to the multiplicity from each term are summarized in Table III. 
The double excitation amplitudes contribute dominantly. However, it should be 
noted that the contribution from the single excitations is not negligible. The initial 
effect of singles makes a difference in the multiplicity between the CCD and CCSD 
wavefunctions, however, the contribution from disconnected singles which appears 
first in the fifth-order is not important for SCF reference functions. For non-Hartree
-Fock spin contaminated solutions this would not be true. 12 

The UHF determinant wavefunction and determinants created by excitation from 

TABLE III 

Contributions from each term to the transition matrix element <0\52 \<1» in the CCSD model 
---------- ----

Types of contributions B C N 0 F 

- ----~-

<0\52 T 1 \0) -0·00149 -0·00125 -0·00113 -0·00088 -0·00033 

<0\52 (1/2) Tr\O) -0·00000 -0·00000 -0·00000 -0·00000 0·00000 

<0\5T2 \0) -0·00539 -0·00500 -0·00414 -0·00471 -0·00210 

<0152(T 1 + 
(1/2) Tr + T 2)\0) -0·00688 -0·00626 -0·00527 -0·00559 -0·00243 

<0\52 (1 -j T 1 + 
(1/2) Tr + T2)\0) 0·75003 2·00006 3·75010 2·00015 0·75005 
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the UHF determinant are eigenfunctions of the 5z operator as long as the number 
of electrons for each spin is conserved. Full configuration interaction (FCI) is the 
best solution in the space spanned by those determinants although the space is much 
larger than necessary to obtain the solution. The transition matrix calibrates the 
deviation of the approximate wavefunctions from the exact vector in the space. 
The CCSD and CCSDT-l values indicate that the CC method corrects the ap
proximate wavefunction in terms of the spin multiplicity as well as the energy without 
any condition externally imposed. 

The spin operator 52 thus formulated in normal operator form can also be used as 
a spin projection or annihilation operator,6.7 Aj ex [52 - Sj(Sj + I)J for some 
eigenvalue Sj. Use of such a projection operator provides a reasonable starting vector 
for a CC iteration compared to an ordinary perturbation scheme where the reference 
determinant would deviate considerably from the exact solution due to spin contami
nation. Since UHF-CC iterations slowly rotate away the spin contamination, we 
can accelerate the convergence by applying AjIO> and truncating back to a single 
reference, If>o. This gives us a less contaminated starting point. Furthermore, since 
the energy is evaluated by < If> 0 1 HNe Tllf>o), left multiplication by r/Jo eliminates 
further contamination introduced by eTIr/Jo>. The final converged CCSD or CCSDT-l 
result is unchanged by this procedure, except the convergence is accelerated. Such 
techniques have been used in our computer codes for sometime. 5 

However, we can obtain even less spin-contaminated results using our recently 
proposed open-shell spin restricted CC method.13 In this case, we can use a restricted 
open-shell Hartree-Fock (ROHF) function as a reference or what we call a quasi
-restricted Hartree-Fock (QRHF) function for most open-shell examples. The latter 
employs any set of closed-shell RHF orbitals for an open-shell case by enforcing 
maximum double occupancy for the high-spin determinantal form. Hence ROHF 
or the QRHF function is an eigenfunction of 52. A CC calculation is then per
formed, just as in the UHF case, except the required computer time can be greatly 
reduced via fully exploting the double occupancy of the orbitals. For such a reference 
for an open-shell, exp(T) r/Jo will not preserve the spin-symmetry of the reference, 
yet by virtue of r/Jo being an eigenfunction of 52, projection by r/Jo gives E = 

= <If>oIHeTllf>o> and all spin contamination in eTIr/Jo> is removed in the energy 
evaluation. Of course, this procedure results in energies that are different than those 
obtained in UHF-CC, and these differences can have important consequences in 
cases where spin-contamination has a crucial effect as in the F-Hz transition state. 14 
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